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Architecture is more important over parameters



ID‘!Q NEAT: EA-based Network Topology Works in Real Problems

] B 3 1 4] 5] 6. I B3 | 4] 5|6 7
| =>4 Pe=d | 3=>42=>5|5=>4||=>5| =>4 P=>g |3=>4[2=>5|5=>4 || =>5 |3=>5
Genome (Genotype) DIS DIS

Mutate Add Connection

—J-

NOde Node 1 |[Node 2 |Node 3 |Node 4 |Node 5

Genes |sensor |sensor |sensor |output |Hidden

Connect. | In 1 In 2 In 3 In 2 In 5 In 1 In 4 1 - 3
Genes out 4 out 4 Oout 4 Oout 5 out 4 out 5 Oout 5 -

Weight 0.7 |Weight-0.5 |Weight 0.5 |Weight 0.2 |Weight 0.4 | Weight 0.6 Weight 0.6

Enabled DISABLED Enabled Enabled Enabled Enabled Enabled

Innov 1 Innov 2 Innov 3 Innov 4 Innov 5 Innov 6 Innov 11 l - 5 6 I 2 3 4 5 () 8 9

=>4 2=>5|5=>4| 1=>5|  [|=>4 P=>d [3=>4| 2=>5|5=d [|=>5|3=>6 [h=>4
‘ DIS |DIS
Mutate Add Node

Network (Phenotype)

- Instead of train a full net and then de-redundancy, NEAT evolves from minimal baby r
- Weight space explored via crossover or networks weights and mutation of weights/toj

- EBEvolutionary optimization compared to backpropagation

P

Car Pole Balancing Control Problems

K. O. Stanley and R. Miikkulainen, "Evolving Neural Networks through Augmenting Topologies," in Evolutionary
Computation, vol. 10, no. 2, pp. 99-127, June 2002
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Minimal Network
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WANN: NEAT-based Networks Applied in Real Problems without Parameters’ Help

Weight set to +1.0

\

Weight set to -1.5

}

r

Fine-tuned Weights

« WANNSs can perform its task using range of shared weight
parameters
» But the performance is still not comparable to a network that

learns weights for each individual connection

A. Gaier and D. Ha, "Weight Agnostic Neural Networks," NeurlPS 2019
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Architecture, architecture, architecture...

« Learned “important” weights of the large model are not useful for the small pruned model

« The pruned architecture itself, rather than a set of inherited “important” weights, is more
crucial fo the efficiency in the final model, which suggests that in some cases pruning can
be useful as an architecture search paradigm

-- Z. Liu et. al., Rethinking the Value of Network Pruning, ICLR 2019

« Asrandomly weighted neural networks with fixed weights grow wider and deeper, an
“Yuntrained subnetwork” approaches a network with learned weights in accuracy.

-- V. Ramanujan et. al., What's Hidden in a Randomly Weighted Neural Networke, CVPR 2020

« Networks with randomly generated architectures yield networks with competitive accuracy
on ImageNet, the best ones outperform or are comparable to their fully manually designed
counterparts and the networks found by various neural architecture search methods

-- S. Xie et. al., Exploring Randomly Wired Neural Networks for Image Recognition, CVPR 2020
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But parameters are very very important



l‘"‘ Lottery Ticket Hypothesis: the same architecture + bad initialization weights = NO!

DMAI
Randomly Randomly
initialize —» Prune — initialize —> Prune —>
weights and weights and
train train
90% accuracy 90% accuracy 90% accuracy 90% accuracy
Randomly Use same
initialize . O — & weight . O —
weights and Q initialization O
train and train
60% accuracy 90% accuracy

“A randomly-inifialized, dense neural network contains a subnetwork that is initialized such that
— when frained in isolation — it can match the test accuracy of the original network after

training for at most the same number of iterations.”

Jonathan Frankle and Michael Carbin
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, ICLR 2019
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(’w:,u_T;%— \: wr fiy, G2
I
| | Adaptive BN
[0.1,05, .., 0.5] : I.II l I.II 3%
Filter | | (" mm Y .
Prunin | | Adaptive BN | Finetuning
III m—p [0.5,0.2, ..., 0.1] % : .III : captve ., : .II 14 | e— II 20.7%
) . I : | \——.—————‘) . . . .
wr pir, 0} : o : Wrsar Brsar) O rar Winning architectures
03 0.2 07 | | Adaptive BN .
(03,02, ., 0.7] | iii= | = Illl 10% can be very different
S and unpredictable
Trained Pruning Strategy Sub-nets From Winner Candidates Delivered
Model Generation Searching Space Selection Pruned Model
|<— Strategy Generation —>|<— Filter Pruning —>|<— ABN-based Candidate Evaluation —>|
Model-FLOPs Fine-tuning RNl Conclusions:
MobileNetV 1-284M 70.9% 68.7% « Prune a trained large model > Train a pruned model
ResNet50-3G 77.1% 75.6% ) Flne;:’rur]rmg]zgrom Sclf:O(;:Sh:] 80 ]
i r
ResNet50-2G 76.4% 74.4% aste ( epochs epoc S)
« Better accuracy (left table)
ResNet50-1G 74.2% 71.7%

* Inherit weights from pre-trained on large dataset

Bailin Li, Bowen Wu, Jiang Su, Guangrun Wang, Liang Lin, “EagleEye: Fast Sub-net Evaluation for Efficient Neural Network Pruning”, ECCV 2020
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Parameter Precisions

— Binary / INT2 / INT4 / INT8/ INT16 / FP32

Datasets

— MNIST / CIFAR-10 / ImageNet

NN models
— FC:784/4096x3/10

— CNNs: VGGNet (15 CONVs+3FC) and Da

rkNet (8 CONVs)

— NN arch. scaling factors: 0.03125, 0.0625,

0.125,0.25,0.5, 1

Metrics

— BRAM (Bits) is memory footprint on hard
ware that reflects amount of NN parame

ters

< Binary-Top5 1 INT2-Top5 INT4-Top5
1.00 INT8-Top5 X INT16-Top5 O FP32-Top5
BRAM Usage (Bits)
0.90 <
a

0.80
® 0.70
=4
& 0.60 <
=
= o

0.50
B 0 *
= 0.0
H ° g
< 0.30
= X o]

0.20

X o
0.10
0.00
7.0E+05 7.0E+06 7.0E+07 7.0EA

Conclusions:

,"‘\ Parameters may work together with architecture to guarantee model accuracy

< Binary-Top1l - INT2-Topl INT4-Topl
1.00 INT8-Topl X—INT16-Topl FP32-Topl
<

0.90

0.80
@
= 070 o X
[~
I
2 0.60 o n
s X
= 0.50
S
= 0.40
- - X
=
< 0.30
24

0.20

0.10 .

BRAM Usage (Bits)
0.00
7.0E+05 7.0E+06 7.0E+07 7.0E+08

*  Model with 2-bit parameters requires ~2X larger architectures
than high-precision models to achieve the same accuracy

* INT4 and INT8 are more hardware-efficient than INT2 or Binary

networks on ImageNet Tasks

J. Su, N. Fraser, G. Gambardella, M. Blott, G. Durelli, D. B. Thomas, P. Leong and P. Y. K. Cheung, " Trade-offs Between Accuracy and Throughput
for Reduced Precision NNs on Reconfigurable Logic”, Int. Symp. on Applied Reconfig. Comput., 2018.
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Architecture and parameters are somehow correlated
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Fine-tuned Weights

« WANNSs can perform its task using range of shared weight
parameters
» But the performance is still not comparable to a network that

learns weights for each individual connection

A. Gaier and D. Ha, "Weight Agnostic Neural Networks," NeurlPS 2019



l‘"‘ WANN: NAS acts as genome while Parameters act as individual growth
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Weight set to +1.0

« WANNs can perform its task using range of shared weight ~
parameters

« But the performance is still not comparable to a network that v AR
learns weights for each individual connection

Fine-tuned Weights

To further improve its performance, we can use the WANN
architecture, and the best shared weight as a starting
point to fine-tune the weights of each individual
connection using a learning algorithm

A. Gaier and D. Ha, "Weight Agnostic Neural Networks," NeurlPS 2019
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Baldwin Effect

- Changed
- Environment

Changed
Needs

Changed
Behaviour

Badwin

Use/Disuse
of Structure

Learned
Behaviour

Genetic
Assimilation

Performance

- Strongly innate Waddington

—— Strongly innate

- = = Innate + learning - — = Innate + learning

F b 1 Adaptive
: ' : : Sestie ' InheErltTdﬁChange
Time after birth Time after birth Variation 5 (Evolution)

Darwin

a Learning makes two different species the same level of fitness
b A species using the mixed strategy may thrive if the environment dramatically changes

Zador, A.M. A critique of pure learning and what artificial neural networks can learn from animal
brains. Nat Commun 10, 3770 (2019)
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There might be a unified formulation across architecture ( Q) an
d Parameters| ﬁ ) to describe the black-box of DNNs

y=f(xla,B)
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Current NAS:

« Searching encoding of monotonic connections or searching pre-defined super ne
twork in a brute-force way (unpredictable).

«  More efficient way of evolution needs to be found for complex primitive operators

« Applicability (enormous searching efforts and hardware-friendly issues)

Current pruning methods:

« Do notignore the power of genome



,‘"‘ Deployable NAS: A disaster to computation in both searching and deployment
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WS(2, 0.75)

Saining Xie, Alexander Kirillov, Ross Girshick, Kaiming He, "Exploring Randomly Wired Neural Networks for Image Recognition," CVPR 2019



l‘"‘ Deployable NAS: Different building blocks = different hardware challenges
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Roofline Model for Google TPU V1

Memory-bound area

§ 100 ° PY ° [ ] ® [ ] [ ] L]
O o
Q
wn
(@)
O
o 10
O
2
2 . Vision models
O .
O
Q1 . Speech models
o ° Computation-bound area
1 10 100 1000 10000

Operational Intensity: Ops/weights byte (log scale)

Data source: N. Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit’, ACM SIGARCH Computer Architecture News 45(2): 1-12, June 2017


https://www.researchgate.net/publication/319856813_In-Datacenter_Performance_Analysis_of_a_Tensor_Processing_Unit

I‘"‘ Deployable NAS: Arch.+Param. As in the Software-To-Hardware Full Stack

DMA
.. . Algorithm
Small yet efficient op. primitives, Auto differentiation
model de-redundancy , Quantization supports
High-level PL | :
ossy/lossless compression supports
Layer/Op. fusion, Compiler
constant inference,
time-multiplexed ISA gen.
OS/Runtime

Parallelism, pipelining, data
transfer, low/ultra-low precision,
sparse computation, near memory

Power, performance, area Circuit
Physical

God bless... Falbrication and Material



Petaflop/s-day (Training)

,‘"‘ Deployable NAS/pruning: a way to slow down HPC scalability?
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AlexNet to AlphaGo Zero: A 300,000x Increase in Compute

10,000 T T T T T
1000 e AlphaGo Zero 32k o —‘—ideal 1
e AlphaZero - — actual
100 e Neural Machine Translation - 16k » -
e Neural Architecture Search (@]
10 Q
OXception.TI7 Dota 1v1 %
1 —_ 8k B -
VGG e DeepSpeech2 8
1 ® Se(2Seq *ResNets @) 4k = =
T
e GoogleNet E
el e AlexNet ® Visualizing and Understanding Conv Nets ) —
e Dropout 2k B T
.001
1 1 | | 1
.0001
Joon 8 16 32 64 128 256 352
.00001 # GPUs
2013 2014 2015 2016 2017 2018 2019

e P. Goyal et. al., “Accurate, Large Minibatch SGD: Training

ImageNet in 1 Hour”, Facebook Al
OpenAl, https://www.jigizhixin.com/articles/051704 8 ’

Can NAS cool down people from the enthusiasm on computational power?



,‘w Summary
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« Architecture or parameters can be both important and somehow correlated
 Pruning can be a way to conduct deployment-oriented NAS
« Biological analogy: architecture as genome while parameters as individual diff.

« Deployable NAS: a full-stack optimization problem
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Thank you

Jiang Su
sujlang@dm-ai.cn
2020-08-29



