

智能医学影像处理、分析与应用 (CCF-CV走进高校系列报告会.第81期)

医学影像分析中的深度学习技术

夏勇(教授)

空天地海一体化大数据应用技术国家工程实验室 西北工业大学.计算机学院

大连理二大学

DALIAN UNIVERSITY OF TECHNOLOGY WINCENTS/TECHCORWEIN

(2020.07)

1. From Neural Network to Deep Learning

2. Semi-supervised Medical Image Classification

3. Semi-supervised Medical Image Segmentation

4. Conclusion and Future Perspectives

From Neural Network to Deep Learning

• Neuron Model

• Perceptron

• Multi-Layer Perceptron (MLP)

Layer L₁ Layer L₂ Rumelhart et al., Nature, 1986.

• Deep Learning

From Neural Network to Deep Learning

• Neuron Model

• Multi-Layer Perceptron (MLP)

Layer L_1 Layer L_2 Rumelhart et al., Nature, 1986.

• Deep Learning

Krizhevsky et al., NIPS 2012.

2019/10/24

Deep Learning Model Zoo

Ø019/10/24

Deep Learning in Computer Vision

ImageNet Classification top-5 error (%)

Image Classification

Image Superresolution

Image Style Transfer

Beach Generated Videos

Image-to-Image Generation

A small bird with a black head and wings and features grey wings

Text-to-Image Generation

Image-to-Video Generation

2019/10/24

Deep Learning in Medical Imaging Analysis

Google使用深度学习直接对细胞 影像生成荧光标记 - 《Cell》

于检测成人手腕骨折的0steo 心脑血管疾病风险,发表 Detect软件获得FDA批准

在《Nature》

2019/10/24

1. From Neural Network to Deep Learning

2. Semi-supervised Medical Image Classification

4. Conclusion and Future Perspectives

Lung Nodule Classification

- A "spot" on the lung, less than 3 cm in diameter and detected by anatomical imaging
 - Benign nodule: a benign lung tumour such as hamartomas
 - Malignant nodule: a primary cancerous lung tumor, lymphomas or a metastasis
- Benign-malignant lung nodule classification
 - Domain knowledge
 - Numerical representation
 - Incorporate the knowledge into deep learning

肺结节的良恶性鉴别

- *轮廓——分叶?
- *边缘——光滑锐利?毛刺?
- *密度——均匀?空洞?钙化?脂肪?支 气管充气征?空泡征?
- *周围——血管集束征? 胸膜凹陷?
- *强化程度——显著强化(≥25HU)?
- *邻近——淋巴结增大? 胸水?

Benign and Malignant Lung Nodules

- Characteristics of malignant nodules
 - Heterogeneity in shape
 - Heterogeneity in voxel values (texture)
- Domain knowledge: There is a high correspondence between a nodule's malignancy and its heterogeneity

BenignMalignantHeterogeneity in Shape (HS)

Benign Malignant Heterogeneity in Voxel Values (HVV)

Fuse-TSD Algorithm

- GLCM-based Texture descriptor: Heterogeneity in voxel values,
- Fourier Shape descriptor: Heterogeneity in shape, and
- Deep model-learned features

Yutong Xie, et al., Information Fusion, 2018.

Knowledge-Based Collaborative Deep Learning

• Using three ResNet-50 models to characterize a nodule's overall appearance (OA), heterogeneity of shape (HS) and heterogeneity of voxel values (HVV), respectively

Yutong Xie, et al., *MICCAI 2017*; Yutong Xie, et al., *IEEE-TMI*, 2019.

Semi-Supervised Adversarial Classification (SSAC) Model

Diagram of SSAC Model

Yutong Xie, et al., Medical Image Analysis, 2019.

Method

Multi-View Knowledge-Based Collaborative SSAC Model

Diagram of proposed MK-SSAC model

Yutong Xie, et al., Medical Image Analysis, 2019.

Data and Results

• LIDC-IDRC Dataset: 1018 Chest CT studies

	Be	nign		Mali	gnant	
Malignancy	1	2	3	4 5		
Number	1.	301	637	644		

• Tianchi Dataset: 1839 unlabeled nodules

Performance of our MK-SSAC model and other models on the LIDC-IDRI dataset

Mathada	Nodules	Results (%)						
Ivietnous	L/UL	Accuracy	Sensitivity	Specificity	AUC			
MK-CatGAN	1945/1839	90.89 <u>+</u> 0.15	81.61 <u>±</u> 0.12	95.48 <u>+</u> 0.10	93.76 <u>+</u> 0.25			
MK-AAE	1945/1839	91.13 <u>+</u> 0.15	82.92 <u>±</u> 0.20	95.19 <u>+</u> 0.12	94.00 <u>±</u> 0.21			
MK-Ladder Network	1945/1839	92.11 <u>±</u> 0.27	83.07 <u>±</u> 0.19	96.59 <u>+</u> 0.10	95.36 <u>+</u> 0.20			
3D GLCM+SVM, 2015	1945/0	85.38 <u>+</u> 0.10	70.20 <u>+</u> 0.15	92.80 <u>+</u> 0.20	88.19 <u>+</u> 0.16			
MVF+SVM, 2016	1945/0	87.90 <u>+</u> 0.17	84.50 <u>+</u> 0.19	89.09 <u>+</u> 0.25	93.77 <u>±</u> 0.15			
Fuse-TSD, 2018	1945/0	88.73 <u>+</u> 0.15	84.40 <u>±</u> 0.20	90.88 <u>+</u> 0.13	94.02 <u>±</u> 0.20			
MV-KBC, 2018	1945/0	91.60 <u>+</u> 0.15	86.52 <u>+</u> 0.25	94.00 <u>+</u> 0.30	95.70 <u>±</u> 0.24			
MK-SSAC	1945/1839	92.53 <u>+</u> 0.05	84.94 <u>±</u> 0.17	96.28 <u>±</u> 0.08	95.81 <u>±</u> 0.19			

Yutong Xie, et al., Medical Image Analysis, 2019.

1. From Neural Network to Deep Learning

2. Semi-supervised Medical Image Classification

3. Semi-supervised Medical Image Segmentation

4. Conclusion and Future Perspectives

空天地海一体化大数据应用技术国家工程实验室

National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology

CAN WE USE IMAGE-LEVEL LABELS TO FACILITATE IMAGE SEGMENTATION?

 Foreground Fisher Vector: A Traditional Approach to Image Classification

Before the Era of Deep Learning

• Fisher vector, deep convolutional neural networks (DCNNs), and the combination

Theory of Fisher Vector

- The set of local descriptors of an image: $X = \{x \in \mathcal{R}^D; x \sim p\}$
- Fisher Score is the gradient of the log-likelihood $P(X|\lambda)$

$$G_{\lambda}^{X} = \nabla_{\lambda} P(\mathbf{X}|\lambda) = E_{x \sim p} \nabla_{\lambda} \log u_{\lambda}(x) = \nabla_{\lambda} \int_{x} p(x) \log u_{\lambda}(x) \, dx$$

where u_{λ} is the probability density function of the generative process

• Fisher Information Matrix

$$F_{\lambda} = E_{x \sim u_{\lambda}} [\nabla_{\lambda} \log u_{\lambda}(x) \nabla_{\lambda} \log u_{\lambda}(x)^{\mathrm{T}}] = L_{\lambda}^{\mathrm{T}} L_{\lambda}$$

• Fisher Kernel

$$K_{FK}(X,Y) = G_{\lambda}^{X^{T}} F_{\lambda}^{-1} G_{\lambda}^{Y} = G_{\lambda}^{X^{T}} G_{\lambda}^{Y}$$

• The **Fisher Vector** of *X* is defined as $\mathcal{G}_{\lambda}^{X} = L_{\lambda} \mathcal{G}_{\lambda}^{X}$.

Theory of Fisher Vector (cont.)

- Non-parametrically estimate p by $X = \{x_t \in \mathbb{R}^D; t = 1, ..., T\},\$
- Parametrically estimate u_{λ} to be a GMM with components { $\mathcal{N}(\mu_l, \sigma_l)$; l = 1, ..., L} and $\lambda = \{\omega_l, \mu_l, \sigma_l; l = 1, ..., L\}$.

$$\begin{cases} \mathcal{G}_{\lambda}^{X} = \left(\mathcal{G}_{\mu,1}^{X}^{T}, \dots, \mathcal{G}_{\mu,L}^{X}^{T}, \mathcal{G}_{\sigma,1}^{X}^{T}, \dots, \mathcal{G}_{\sigma,L}^{X}^{T}\right)^{\mathrm{T}} \\ \mathcal{G}_{\mu,l}^{X} = \frac{1}{T\sqrt{\omega_{l}}} \sum_{t=1}^{T} \gamma_{l}(x_{t}) \left[\frac{x_{t} - \mu_{l}}{\sigma_{l}}\right] \\ \mathcal{G}_{\sigma,l}^{X} = \frac{1}{T\sqrt{2\omega_{l}}} \sum_{t=1}^{T} \gamma_{l}(x_{t}) \left[\frac{(x_{t} - \mu_{l})^{2}}{\sigma_{l}^{2}} - 1\right], \end{cases}$$

 $\gamma_l(x) = \frac{\omega_l u_l(x)}{\sum_{j=1}^L \omega_j u_j(x)}$ is the posterior probability of x assigned to the *l*-th Gaussian component u_l .

Foreground Fisher Vector

• Only foreground X_q is useful for classification

$$\boldsymbol{X} = X_q \cup X_r \leftrightarrow p(x) = wq(x) + (1 - w)r(x)$$

• Foreground FV: $\check{\mathcal{G}}_{\lambda}^{X} = \check{L}_{\lambda}\check{\mathcal{G}}_{\lambda}^{X}$, where $\check{\mathcal{G}}_{\lambda}^{X} = E_{x \sim q} \nabla_{\lambda} \log \nu_{\lambda}(x)$.

Yongsheng Pan, et al., IEEE-TIP, 2019.

Foreground Fisher Vector

•
$$\mathcal{G}_{\lambda}^{X} \to \check{\mathcal{G}}_{\lambda}^{X} \leftrightarrow u_{\lambda} \to v_{\lambda}, p \to q$$

• $\check{\gamma}_l(x) = \frac{1}{w} \gamma_l(x)$ if x is extracted from foreground, otherwise, $\check{\gamma}_l(x) = 0$.

$$\begin{cases} \check{\mathcal{G}}_{\lambda}^{X} = \left(\check{\mathcal{G}}_{\mu,1}^{X}{}^{\mathrm{T}}, \dots, \check{\mathcal{G}}_{\mu,L}^{X}{}^{\mathrm{T}}, \check{\mathcal{G}}_{\sigma,1}^{X}{}^{\mathrm{T}}, \dots, \check{\mathcal{G}}_{\sigma,L}^{X}{}^{\mathrm{T}}\right)^{\mathrm{T}} \\ \check{\mathcal{G}}_{\mu,l}^{X} = \frac{1}{T\sqrt{\omega_{l,v}}} \sum_{t=1}^{T} \check{\gamma}_{l}(x_{t}) \left[\frac{x_{t} - \mu_{l}}{\sigma_{l}}\right] = \frac{\sqrt{\omega_{l}}}{w\sqrt{\omega_{l,v}}} \mathcal{G}_{\mu,l}^{X}, \qquad c_{l} = \frac{\sqrt{\omega_{l}}}{w\sqrt{\omega_{l,v}}} \\ \check{\mathcal{G}}_{*,l}^{X} = \frac{1}{T\sqrt{2\omega_{l,v}}} \sum_{t=1}^{T} \check{\gamma}_{l}(x_{t}) \left[\frac{(x_{t} - \mu_{l})^{2}}{\sigma_{l}^{2}} - 1\right] = \frac{\sqrt{\omega_{l}}}{w\sqrt{\omega_{l,v}}} \mathcal{G}_{\sigma,l}^{X}, \qquad d_{k}$$

- Separating foreground and background equals solving $C = \{c_l, l = 1, \dots, L\}$
- c_l indicates discriminative ability of $(\mathcal{G}_{\mu,l}^X, \mathcal{G}_{\sigma,l}^X)$ and the membership of u_l to foreground.
- $c_l = 0$ means $\mathcal{N}(\mu_l, \sigma_l)$ only models the background.

Yongsheng Pan, et al., *IEEE-TIP*, 2019.

Foreground Fisher Vector

- Calculate $\mathcal{G}_{\lambda}^{X}$ for each X in \mathbb{X}_{T} and \mathbb{X}_{V} ;
- Divide the training set into two subsets $\langle X_T, Y_T \rangle$ and $\langle X_V, Y_V \rangle$;
- Train linear classifier *P* by $\langle X_T, Y_T \rangle$;
- Solve C by maximizing the prediction accuracy on $\langle X_V, Y_V \rangle$.

$$C = \arg \max_{C} \sum_{X \in \mathbb{X}_{V}} \left| y_{X} - P\left(\frac{\mathcal{G}_{\lambda}^{X} \odot C}{\left\|\mathcal{G}_{\lambda}^{X} \odot C\right\|_{2}}\right) \right|.$$

- Then $\check{\mathcal{G}}_{\lambda}^{X} = \mathcal{G}_{\lambda}^{X} \odot \mathcal{C}$.
- Membership grade of *x* to foreground

$$mg(x) = \sum_{l=1}^{L} c_l \gamma_l(x)$$

Yongsheng Pan, et al., IEEE-TIP, 2019.

Data and Results

Results on Oxford Flower dataset (F102), Oxford Pet dataset (P37), Stanford Dog dataset (D120), Caltech-UCSD Bird dataset (B200), FGVC Aircraft dataset (A100), Stanford Car dataset (C196), Caltech-256 Object Category dataset (C256), PASCAL VOC 2007 dataset (V07), Fifteen Scenes dataset (S15), and MIT Indoor dataset (I67)

Method		F102	P37	D120	B200	C196	A100	C256	V07	167	S15
AlexNet	FV	88.10	71.02	47.87	23.43	77.55	60.79	57.72	66.08	64.96	88.93
	IFV	92.72	83.61	60.89	47.28	84.29	74.88	68.62	76.58	72.72	91.57
	fFV	95.34	89.66	70.01	73.31	87.10	81.26	74.66	78.99	74.12	91.80
VGG-M	FV	89.87	71.99	50.20	22.11	80.88	61.09	61.26	70.16	69.04	89.88
	IFV	94.73	86.39	65.03	49.35	86.38	76.71	72.49	79.78	76.31	92.34
	fFV	97.06	91.87	74.43	77.74	89.02	82.28	78.71	83.15	78.14	93.07
VGG-VD16	FV	94.74	88.37	72.53	48.79	88.44	76.11	78.30	84.19	78.82	93.43
	IFV	97.31	92.89	79.03	70.42	90.78	83.34	83.95	89.23	82.57	95.10
	fFV	98.47	94.85	83.63	84.95	92.27	86.63	87.46	91.37	84.15	95.15
VGG-VD19	FV	94.79	89.76	69.77	49.81	88.87	77.37	79.39	85.42	79.95	93.51
	IFV	97.31	93.23	80.53	71.35	91.38	83.75	84.68	89.84	83.77	94.89
	fFV	98.12	94.74	84.64	84.66	92.59	86.57	88.02	91.87	84.47	94.97
ResNet50	FV	95.79	93.18	75.46	48.89	87.03	74.12	81.31	88.20	81.51	94.61
	IFV	97.33	94.81	83.95	70.26	89.34	81.11	86.50	91.28	84.79	95.66
	fFV	98.53	95.44	87.28	86.51	90.96	85.29	89.56	93.00	85.35	95.70
ResNet-101	FV	95.53	92.90	81.67	54.98	85.90	73.22	83.74	87.21	83.08	94.65
	IFV	97.44	95.33	87.53	74.59	88.93	80.42	88.72	92.29	86.20	95.93
	fFV	98.78	96.06	89.27	86.46	90.92	85.34	90.89	93.87	86.26	96.11
ResNet-152	FV	96.06	93.30	81.22	59.84	88.24	74.77	84.48	88.04	82.72	95.11
	IFV	97.68	95.49	87.60	75.65	90.09	80.49	89.00	92.39	85.61	95.78
	fFV	98.65	96.12	89.82	87.90	91.39	84.98	91.16	94.22	86.65	96.05

Yongsheng Pan, et al., *IEEE-TIP*, 2019.

2019/10/24

Data and Results

Ability of fgFV to separate the class-relevant foreground from class-irrelevant background. From top to bottom are the original images (1st and 5th rows, selected from B200 and P37), membership maps (2nd and 6th rows), binary membership maps (3rd and 7th rows), and the class-relevant content (4th and 8th rows).

Yongsheng Pan, et al., IEEE-TIP, 2019.

ISIC Skin Lesion Classification

- ISIC Skin Lesion Classification Challenge 2016 Dataset Training – 900 Test – 379
- ISIC Skin Lesion Classification Challenge 2017 Dataset Training – 2,000 Validation – 150 Test – 600
- ISIC Skin Lesion Classification Challenge 2018 Dataset
 Training 10,015 Validation 193 Test 1,512
- Task: To classify the type of any skin lesion, benign or malignant?
- Evaluation: Average precision* (AveP), Area Under Curve (AUC), Sensitivity, Specificity

2019/10/24

Data and Results

• ISIC 2018: Skin Lesion Analysis Towards Melanoma Detection

Team	BMA	AUC	Accuracy	Sensitivity	Specificity	F1 score	PPV	NPV
DAISYLabs	0.854	0.982	0.970	0.836	0.982	0.843	0.860	0.971
test	0.835	0.964	0.964	0.732	0.987	0.794	0.883	0.959
ViDIR Group	0.821	0.971	0.949	0.820	0.968	0.767	0.734	0.957
Kevin	0.800	0.979	0.967	0.742	0.977	0.797	0.879	0.971
NWPU	0.792	0.952	0.928	0.702	0.980	0.680	0.697	0.924
yspan	0.785	0.949	0.947	0.746	0.975	0.733	0.726	0.948
lyatomi Lab	0.780	0.871	0.943	0.780	0.963	0.738	0.711	0.953
Redha Ali	0.771	0.867	0.943	0.771	0.962	0.707	0.672	0.954
TUHH ISM	0.768	0.978	0.961	0.733	0.967	0.779	0.841	0.971
NWPU	0.754	0.949	0.947	0.732	0.973	0.725	0.728	0.948
Our Proposed FV-ftResNet	0.798	0.952	0.930	0.709	0.979	0.687	0.699	0.927

Class-relevant foreground regions detected during construction of fFV

2019/10/24

空天地海一体化大数据应用技术国家工程实验室

National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology

CAN WE USE IMAGE-LEVEL LABELS TO FACILITATE IMAGE SEGMENTATION?

 Attention Residual Learning: A Deep Learning Approach to Image Classification

Deep Attention Learning

ChestX-ray14 Dataset: 14 Thoracic Diseases

Diagram of the proposed ChestNet model

Hongyu Wang, et al., *IEEE-JBHI*, 2019.

Attention Residual Learning

• Different types of blocks used in deep learning models

Jinapeng Zhang, et al., IEEE-TMI, 2019.

2019/10/24

ARL-CNN Model

Diagram of the Attention Residual Learning based Convolutional Neural Network (ARL-CNN)

Jinapeng Zhang, et al., IEEE-TMI, 2019.

2019/10/24

ARL-CNN Model

Architectures of ResNet14, ARL-CNN15, ResNet50 and ARL-CNN50

Layer name	Output size	ResNet14	ARL-CNN14	ResNet50	ARL-CNN50
Conv1	112x112x64	Conv, 7x7, stride 2	Conv, 7x7, stride 2	Conv, 7x7, stride 2	Conv, 7x7, stride 2
Com/2 x 56x56x256		3x3 max pool, stride 2	3x3 max pool, stride 2	3x3 max pool,stride 2	3x3 max pool,stride 2
COIV2_A	307307230	Residual block	ARL	[Residual block]x3	[ARL]x3
Conv3 x	28x28x512	Residual block stride 2	ARI stride 2	Residual block, stride 2	ARL, stride 2
20X20X512		Residual block,stride 2	ARE, surde 2	[Residual block]x3	[ARL]x3
Conv ₄ x	$14 \times 14 \times 1024$	Residual block stride 2	ARI stride 2	Residual block, stride 2	ARL, stride 2
COIN4_X	1471471024	Residual block, surde 2	ARE, surface 2	[Residual block]x5	[ARL]x5
Conv5 x	7x7x2048	Residual block stride 2	ARI stride 2	Residual block, stride 2	ARL, stride 2
CONV <u>J</u> X	77772040	Residual block,stride 2	ARE, surface 2	[Residual block]x2	[ARL]x2
GAP	1x1x2018	Global Average Pooling	Global Average Pooling	Global Average Pooling	Global Average Pooling
FC	2	Fully Connected	Fully Connected	Fully Connected	Fully Connected

Jinapeng Zhang, et al., *IEEE-TMI*, 2019.

2019/10/24

ISIC Skin Lesion Classification

- ISIC Skin Lesion Classification Challenge 2016 Dataset Training – 900 Test – 379
- ISIC Skin Lesion Classification Challenge 2017 Dataset Training – 2,000 Validation – 150 Test – 600
- ISIC Skin Lesion Classification Challenge 2018 Dataset
 Training 10,015 Validation 193 Test 1,512
- Task: To classify the type of any skin lesion, benign or malignant?
- Evaluation: Average precision* (AveP), Area Under Curve (AUC), Sensitivity, Specificity

2019/10/24

Results

Comparison of the proposed ARL-CNN model with baseline models (ResNet-14 and ResNet-50), and state-of-the-art attention methods (Senet-14 and RAN-14) in melanoma classification and seborrheic keratosis classification in ISIC 2017 dataset.

Methods	\mathbf{P}_{arams} ($\times 107$)		Melano	ma Classificat	ion	Seborrheic Keratosis Classification			
		AUC	ACC	Sensitivity	Specificity	AUC	ACC	Sensitivity	Specificity
ResNet14 [23]	0.8	0.732	0.748	0.538	0.799	0.820	0.711	0.800	0.696
RAN14 [19]	1.2	0.767	0.762	0.615	0.797	0.852	0.758	0.833	0.745
SEnet14 [20]	1.1	0.758	0.757	0.598	0.795	0.847	0.727	0.811	0.712
ARL-CNN14	0.8	0.777	0.778	0.615	0.818	0.875	0.763	0.822	0.753
ResNet50*	2.3	0.857	0.838	0.632	0.888	0.948	0.842	0.867	0.837
ARL-CNN50*	2.3	0.875	0.850	0.658	0.896	0.958	0.868	0.878	0.867

Comparison between the proposed ARL-CNN model and the top six ISIC 2017 challenge records. For each performance metric, **the highest and second highest** values were highlighted in **"red bold**" and **"black bold**". respectively.

Methods		Melano	ma Classificat	ion	Seb	orrheic I	Average AUC		
methods	AUC	ACC	Sensitivity	Specificity	AUC	ACC	Sensitivity	Specificity	Average AUC
Ours	0.875	0.850	0.658	0.896	0.958	0.868	0.878	0.867	0.917
#1 [31]	0.868	0.828	0.735	0.851	0.953	0.803	0.978	0.773	0.911
#2 [32]	0.856	0.823	0.103	0.998	0.965	0.875	0.178	0.998	0.910
#3 [33]	0.874	0.872	0.547	0.950	0.943	0.895	0.356	0.990	0.908
#4 [34]	0.870	0.858	0.427	0.963	0.921	0.918	0.589	0.976	0.896
#5 [35]	0.830	0.830	0.436	0.925	0.942	0.917	0.700	0.995	0.886
#6 [36]	0.836	0.845	0.350	0.965	0.935	0.913	0.556	0.976	0.886

Jinapeng Zhang, et al., *IEEE-TMI*, 2019.

Results

Visualization of class activation mapping (CAM). Top row: dermoscopy images; Middle row: CAMs from ResNet50; Bottom row: CAMs from ARL-CNN50.

Visualization of attention regions learned in different tasks. Top row: dermoscopy images; Middle row: CAMs learned for melanoma classification; Bottom row: CAMs learned for seborrheic keratosis classification.

Jinapeng Zhang, et al., IEEE-TMI, 2019.

空天地海一体化大数据应用技术国家工程实验室

National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology

TOWARDS A UNIFIED IMAGE CLASSIFICATION-SEGMENTATION FRAMEWORK

— semi- and weakly-supervised Image segmentation

Medical Image Segmentation

• Segmentation of Skin Lesion

- Challenge of medical image segmentation
 → limited data with pixel-wise dense annotations
- Semi-supervised
 - \rightarrow labeled data + unlabeled data
- Weakly supervised:
 - → weakly labeled data (e.g. bounding boxes / points / image-level labels)

Challenges on skin lesion segmentation. From these figures, we can see that skin lesion has variety of appearances, fuzzy object borders and some inevitable distractions. Red dash line represents the skin lesions contoured by dermatologists.

MB-DCNN Model: Skin Lesion Segmentation and Classification

> Leverage the **intrinsic correlation** existed in segmentation and classification tasks

Diagram of mutual bootstrapping DCNNs (MB-DCNN) model

Yutong Xie, et al., arXiv:1903.03313.

2019/10/24

MB-DCNN Model: Segmentation for Classification

Transfer the masks produced by coarse-SN to mask-CN -> provide the prior lesion location (1) Training coarse-SN using pixel-level labels to roughly segment lesions

Diagram of mutual bootstrapping DCNNs (MB-DCNN) model

Yutong Xie, et al., arXiv:1903.03313.

2019/10/24

MB-DCNN Model: Segmentation for Classification

- Transfer the masks produced by coarse-SN to mask-CN -> provide the prior lesion location
 - (1) Training coarse-SN using pixel-level labels to roughly segment lesions
 - (2) Employing coarse-SN to boost the localization ability of mask-CN

Diagram of mutual bootstrapping DCNNs (MB-DCNN) model

Yutong Xie, et al., arXiv:1903.03313.

2019/10/24

MB-DCNN Model: Classification for Segmentation

- > Leverage the **intrinsic correlation** existed in segmentation and classification tasks
- > Transfer the masks produced by **coarse-SN to mask-CN** -> provide the prior lesion location
- > Transfer the lesion location refined by **mask-CN to enhanced-SN** -> facilitate segmentation

Diagram of mutual bootstrapping DCNNs (MB-DCNN) model

Yutong Xie, Jianpeng Zhang, **Yong Xia***, Chunhua Shen, "A Mutual Bootstrapping Model for Automated Skin Lesion Segmentation and Classification", arXiv:1903.03313.

MB-DCNN Model: Segmentation for Classification

- > Transfer the masks produced by **coarse-SN to mask-CN** -> provide the prior lesion location
 - (1) Training coarse-SN using pixel-level labels to roughly segment lesions
 - (2) Employing coarse-SN to boost the localization ability of mask-CN

(a) input (b) w/o coarse mask (c) with coarse mask (d) ground truth

CAM obtained by mask-CN when using or not using the coarse mask

Yutong Xie, et al., arXiv:1903.03313.

2019/10/24

MB-DCNN Model: Classification for Segmentation

Visualization of some segmentation results

Yutong Xie, et al., arXiv:1903.03313.

Segmentation Performance of MB-DCNN Model

Datasets	ISIC-2017										
Methods	CDNN,	DDN,	FCN+SSP,	SLSDee	ep, Our						
	2017 [31]	2017 [17]	2018 [21]	2018 [2	4] SWSDB						
JA	76.5	76.5	77.3	78.2	80.4						
DI	84.9	86.6	85.7	87.8	87.8						
AC	93.4	93.9	93.8	93.6	94.7						
SE	82.5	82.5	85.5	81.6	87.4						
SP	97.5	98.4	97.3	98.3	96.8						
Deterrete	<u> </u>		5114								
Datasets			PH2								
Methods	mFCNPI,	RFCN,	PH2 SLIC,	Our	Fine-tuned						
Methods	mFCNPI, 2017 [6]	RFCN, 2017 [30]	PH2 SLIC, 2018 [22]	Our SWSDB	Fine-tuned SWSDB						
Datasets Methods JA	mFCNPI, 2017 [6] 84.0	RFCN, 2017 [30]	PH2 SLIC, 2018 [22] -	Our SWSDB 86.7	Fine-tuned SWSDB 89.4						
Datasets Methods JA DI	mFCNPI, 2017 [6] 84.0 90.7	RFCN, 2017 [30] - 93.8	PH2 SLIC, 2018 [22] - -	Our SWSDB 86.7 92.6	Fine-tuned SWSDB 89.4 94.2						
DatasetsMethodsJADIAC	mFCNPI, 2017 [6] 84.0 90.7 94.2	RFCN, 2017 [30] - 93.8 -	PH2 SLIC, 2018 [22] - - 90.4	Our SWSDB 86.7 92.6 95.8	Fine-tuned SWSDB 89.4 94.2 96.5						
DatasetsMethodsJADIACSE	mFCNPI, 2017 [6] 84.0 90.7 94.2 94.9	RFCN, 2017 [30] - 93.8 - -	PH2 SLIC, 2018 [22] - 90.4 91	Our SWSDB 86.7 92.6 95.8 97.9	Fine-tuned SWSDB 89.4 94.2 96.5 96.7						

Yutong Xie, et al., arXiv:1903.03313.

2019/10/24

Classification Performance of MB-DCNN Model

• ISIC-2017 Challenge Dataset

• PH2 Dataset:

Training dataset: pixel-label: 2000 image-label: 1320

Pixel-label: 200

Validation: 150 Testing: 600

Image-label: 200

Methods	Melan	oma Cla	assificati	on	Keratosis Classification				Average	-
Wethous	AC	SE	SP	AUC	AC	SE	SP	AUC	AUC (%)	-
Ours	87.8	72.7	91.5	90.3	93.0	84.4	94.5	97.3	93.8	-
ARL-CNN [29], 2019	85.0	65.8	89.6	87.5	86.8	87.8	86.7	95.8	91.7	-
SSAC [49], 2019	83.5	55.6	90.3	87.3	91.2	88.9	91.6	95.9	91.6	ISIC
SDL [19], 2019	88.8	-	-	86.8	92.5	-	-	95.8	91.3	2017
#1 [50]	82.8	73.5	85.1	86.8	80.3	97.8	77.3	95.3	91.1	201 /
#2 [51]	82.3	10.3	99.8	85.6	87.5	17.8	99.8	96.5	91.0	-
#3 [52]	87.2	54.7	95.0	87.4	89.5	35.6	99.0	94.3	90.8	-
#4 [53]	85.8	42.7	96.3	87.0	91.8	58.9	97.6	92.1	89.6	-
#5 [54]	83.0	43.6	92.5	83.0	91.7	70.0	99.5	94.2	88.6	-

Methods	AC	SE	SP	AUC	
Ours (Fine-tuned)	94.0	95.0	93.8	97.7	
Ours	88.5	82.5	90.0	95.6	DIIA
CICS [55], 2017	-	100.0	88.2	-	PH2
MFLF [56], 2015	-	98.0	90.0	-	
CCS [57], 2015	-	92.5	76.3	84.3	

Yutong Xie, et al., arXiv:1903.03313.

2019/10/24

Advantages of mutual bootstrapping

Average AUC values obtained on the ISIC-2017 validation set by our MB-DCNN model with or without the help of coarse-SN

JA values of our MB-DCNN model and its full supervised counterpart on the ISIC-2017 validation set versus the number of training images with pixellevel labels.

Yutong Xie, et al., arXiv:1903.03313.

2019/10/24

1. From Neural Network to Deep Learning

2. Semi-supervised Medical Image Classification

3. Semi-supervised Medical Image Segmentation

4. Conclusion and Future Perspectives

Yesterday: First CAD System

- The prototype CAD system for the detection of breast cancer on mammograms was developed in 1994 at the University of Chicago.
- The first CAD system for screening mammography was approved by the United States Food and Drug Administration in 1998.

Today: Breakthroughs in Medical Image Analysis

Challenges of CAD: Mistakes and Prejudices

4月《自然-机器智能》封面故事:人工智能和机器 学习系统可能在许多任务上远超人类表现,但它们 也*可能模仿或放大人类的错误和偏见*。心理学家数 十年来对人类决策判断中的错误和偏见的发生及预 防所开展的研究,在心理学和机器学习文本之间建 立了联系,为发展和改善机器学习算法指明了方向。

Learning from human decision making

Artificial intelligence and machine learning systems may surpass human performance on a variety of tasks, but they may also mimic or amplify human errors or biases. This issue of *Nature Machine Intelligence* features a Perspective

development and prevention of

errors and biases in human judgment and decision making. The authors provide connections between the psychology and machine learning literatures, and offer guideposts for the development and improvement of machine learning algorithms. See <u>Alexander S. Rich</u> and <u>Todd M. Gureckis</u>

Data Sampling Bias

• Discrepancy between the distributions of training data and real data

Computer-Aided Early Diagnosis of Dementia

Research – Most research focuses on Alzheimer's disease (AD) and mild cognitive impairment (MCI)

Clinics – There are many types of dementia, such as

Common Types

Alzheimer's disease (50 - 70%) Vascular dementia (25%) Lewy body dementia (155) Frontotemporal dementia

Less Common Types

Normal pressure hydrocephalus
Parkinson's disease dementia
Syphilis
Creutzfeldt–Jakob disease
Others

Dementia – A progressive neural degenerative disease with insidious onset

Dementia worldwide

52

Data Quality Bias

• Variations of medical image quality comes from

- Different medical centers (operators)
- Different scanners (types / vendors)
- Different protocols
- ...

7T MR Image

3T MR Image

1.5T MR Image IBSR V2.0

1.5T MR Image IBSR Normal

Data Annotation Bias

• Inter- and intra-observer variability of manual annotation of medical images

Three trained observers (two radiologists and one radiotherapist) delineated this lesion twice with an interval of about one week (upper row and bottom row respectively). The area of delineated areas varies up to 10% per observer and the difference between observers amounts to more than 20%.

- Annotation of class labels is also difficult (e.g. the malignancy level of lung nodules)
- Consistent conclusions can be reached on easy cases – a cause of data sampling bias

Tomorrow: Challenges and Opportunities

The Advent of the 4th Industrial Revolution 2019/10/24 CCF-CV走进高校系列报告会:医学影像分析中的深度学习技术@电子科技大学

NPU Library at Chang'an Campus

夏勇 (教授)

空天地海一体化大数据应用技术国家工程实验室 西北工业大学计算机学院 QQ: 14174309 邮箱: yxia@nwpu.edu.cn 主页: http://jszy.nwpu.edu.cn/en/yongxia.html

