

模式识别国家重点实验室 National Lab of Pattern Recognition

中国科学院自动化研究所 Institute of Automation Chinese Academy of Sciences

Temporal Action Localization with Weak Supervision and Language

Yan Huang

Center for Research on Intelligent Perception and Computing (CRIPAC) National Laboratory of Pattern Recognition (NLPR) Institute of Automation, Chinese Academy of Sciences (CASIA)

Nov. 8, 2020

Background

Action Classification (video classification)

- trimmed video
- predict an action label

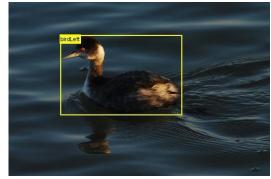
Action Localization (temporal action localization)

- untrimmed video
- predict intervals and labels of actions

Tumbling

Annotations

Expensive



Object proposal (one glimpse) Temporal action proposal (multiple glimpses)

Subjective on action boundaries

The research community has been interested in weakly-supervised temporal action localization (WTAL)

Other Weak Supervisions

Only class annotation No temporal boundary

Longboarding

Language annotation Multiple actions

A person runs to the window and then look out

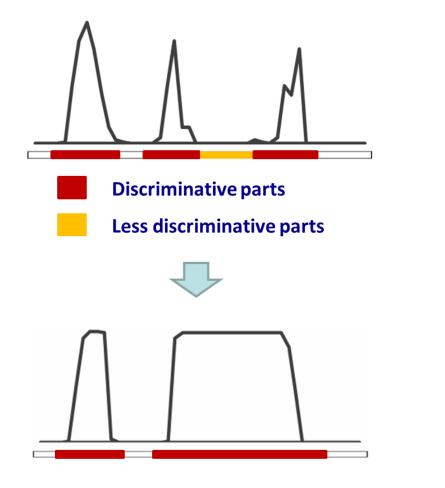
Relational Prototypical Network for Weakly Supervised Temporal Action Localization

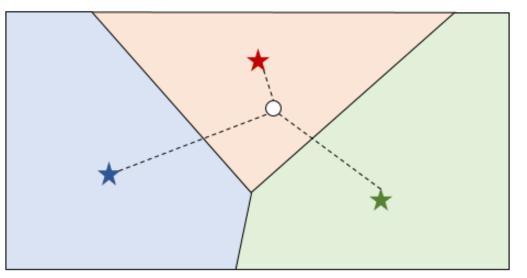
Linjiang Huang, Yan Huang, Wanli Ouyang, Liang Wang

AAAI 2020 (Oral)

Our Motivation

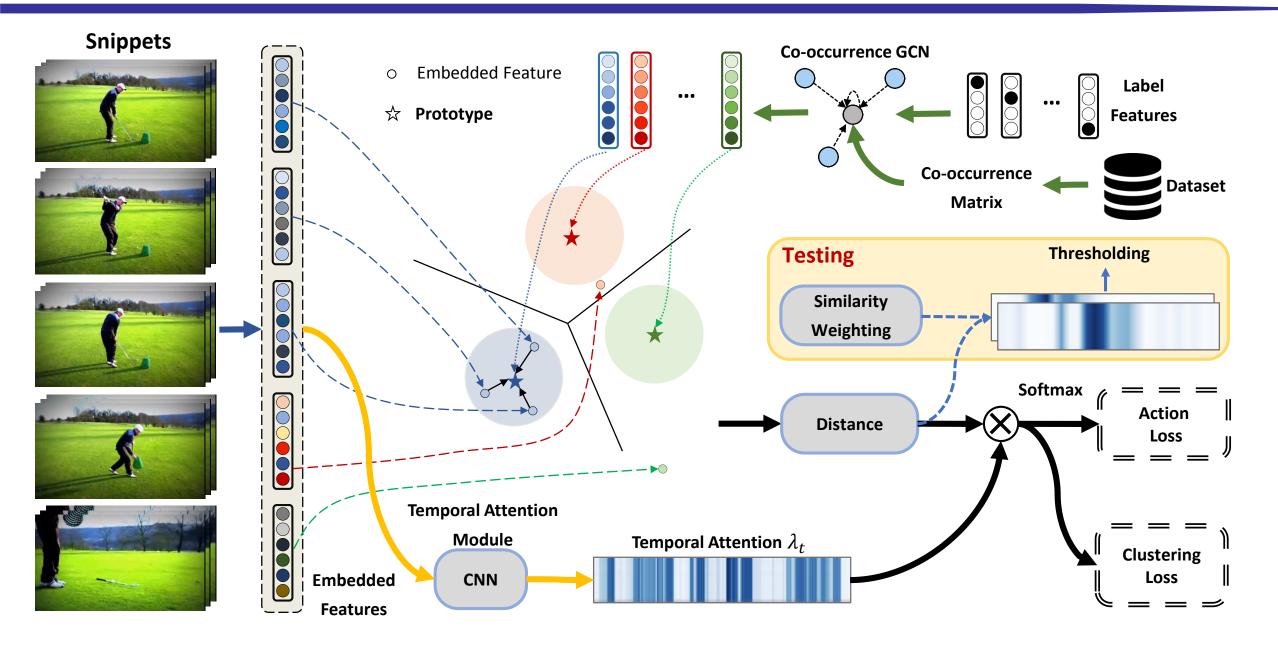
- Learning compact and discriminative features is difficult, due to the imbalance distribution of different actions
- Modeling relations among actions with prototypical network





Prototypical network

Model Architecture



Prototype Embedding Module



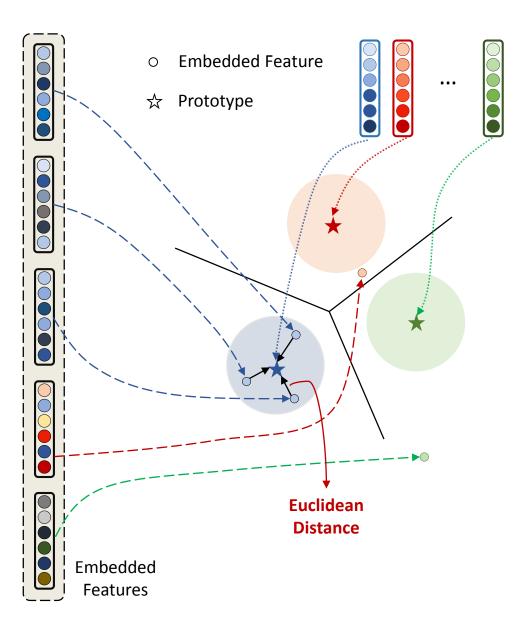
- Affinity matrix derived from statistics in the dataset
- Label features represent different actions
- Co-occurrence GCN captures relations and pulls related prototypes closer

Learning inter-dependent prototypes rather than independent prototypes

Prototypes
$$\boldsymbol{P} = \{\boldsymbol{p}_i\}_{i=1}^C$$

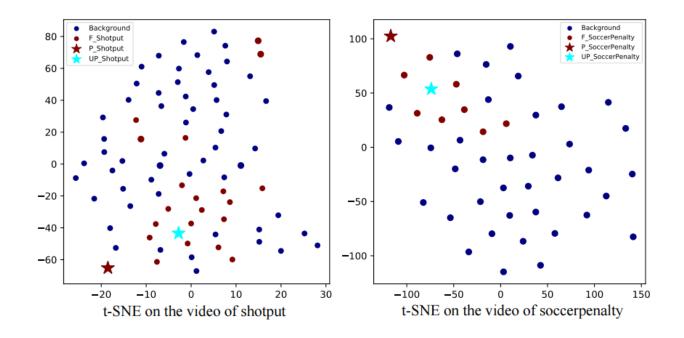
[1] Chen, Z.-M.; Wei, X.-S.; Wang, P.; and Guo, Y. Multi-label image recognition with graph convolutional networks, CVPR 2019
[2] Li, Q.; Han, Z.; and Wu, X.-M. 2018. Deeper insights into graph convolutional networks for semi-supervised learning. AAAI 2018

Prototype Matching Module



Negative Euclidean distance is employed as the similarity between feature and prototype

Matching score
$$\|m{s}_{tj}=-\|m{x}_e^t-m{p}_j\|_2^2$$



Comparison with SOTA

AP @ IoU Method Supervision 0.10.20.4 0.5 0.6 0.7AVG (0.1:0.5) 0.3 Full S-CNN (Shou et al. 2016) 43.5 36.4 28.7 19.0 5.3 35.0 47.7 -Full R-C3D (Xu et al. 2017) 51.5 44.8 35.6 28.9 43.154.5 SSN (Zhao et al. 2017) 56.2 50.6 29.1Full 60.3 40.847.4 TAL-Net (Chao et al. 2018) 57.1 53.2 48.5 42.8 33.8 20.8 52.3 Full 59.8 Weak Hide-and-Seek (Singh et al. 2018) 36.4 27.819.5 12.76.8 20.6 UntrimmedNet (Wang et al. 2017a) 44.4 Weak 37.728.221.113.729.0Weak SbS Erasion (Zhong et al. 2018) 39.0 22.515.9 30.9 45.8 31.1 STPN (UNT) (Nguyen et al. 2018) Weak 45.3 38.8 31.123.5 16.29.8 5.131.0 Weak W-TALC (UNT) (Paul et al. 2018) 49.0 42.8 32.0 26.018.8 6.2 33.7

53.5

54.2

52.0

55.2

57.4

59.8

62.3

46.8

47.1

44.7

49.6

50.8

50.8

57.0

35.8

37.5

37.8

35.5

40.1

41.2

41.1

48.2

29.0

29.1

29.4

25.8

31.1

32.1

30.6

37.2

21.2

19.9

21.2

16.9

22.8

23.1

20.3

27.9

13.4

12.3

13.9

9.9

15.0

12.0

16.7

5.8

6.0

6.8

4.3

7.6

7.0

6.9

8.1

37.4

37.9

35.0

39.8

40.9

40.5

46.5

Weak

Weak

Weak

Weak

Weak

Weak

Weak

Weak

AutoLoc (UNT) (Shou et al. 2018)

CMCS (UNT) (Liu et al. 2019)

STPN (I3D) (Nguyen et al. 2018)

W-TALC (I3D) (Paul et al. 2018)

CMCS (I3D) (Liu et al. 2019)

MAAN (I3D) (Yuan et al. 2019)

Ours (UNT)

Ours (I3D)

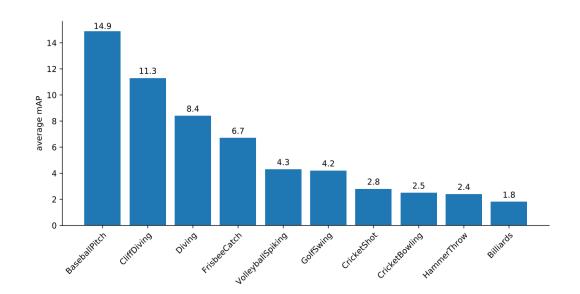
Detection performance comparisons over the THUMOS14 dataset.

3	0	%	4	
J.	U	/0		

Comparison with SOTA

Table 3: Ablation study on prototype embedding module.

Methods	Random Initialization	FC	GCN
AVG (0.1:0.5)	44.6	44.7	46.5

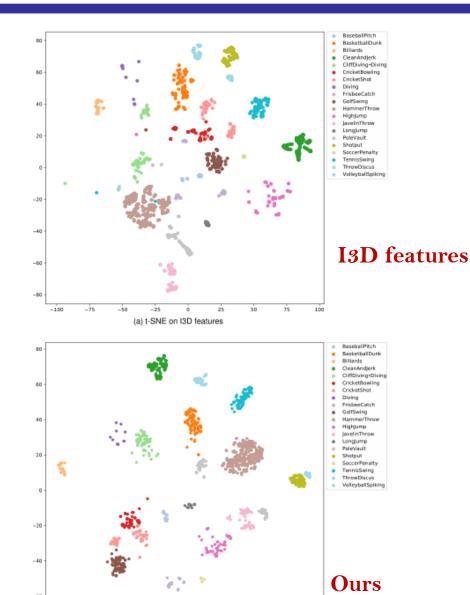


Class-specific gain resulting from building relations of actions. Performance differences between our full model and the one with random initialization are shown.

Table 2: Results on ActivityNet1.2 validation set. The AVG indicates the average mAP at IoU thresholds 0.5:0.05:0.95.

Method					
Method	0.5	0.75	0.95	AVG	
Step-by-Step Erasion	27.3	14.7	2.9	15.6	
AutoLoc (U)	27.3	15.1	3.3	16.0	
CMCS (U)	33.9	19.9	5.1	20.5	
Ours (U)	37.0	21.1	5.2	22.0	1.5%
W-TALC (I)	37.0	_	-	18.0	
CMCS (I)	36.8	22.0	5.6	22.4	
Ours (I)	37.6	23.9	5.4	23.3	0.9%

Evaluate the Learned Features



Method	AP @ IoU						
Wiethou	0.1	0.3	0.5	AVG	Δ		
SimpleNet	52.5	36.7	19.0	36.5	-		
SimpleNet (our feature)	58.5	44.7	25.9	43.7	7.2		
STPN (reported)	52.0	35.5	16.9	35.0	-		
STPN (reproduced)	53.6	39.0	23.2	39.1	-		
STPN (our feature)	58.0	42.9	25.2	42.4	3.3		
W-TALC (reported)	55.2	40.1	22.8	39.8	-		
W-TALC (reproduced)	55.2	40.3	23.7	40.0	-		
W-TALC (our feature)	55.0	39.4	24.0	39.7	-0.3		

Our method indeed learns more compact features compare to the original I3D features

The learned features can substantially improve the performance of temporal action localization

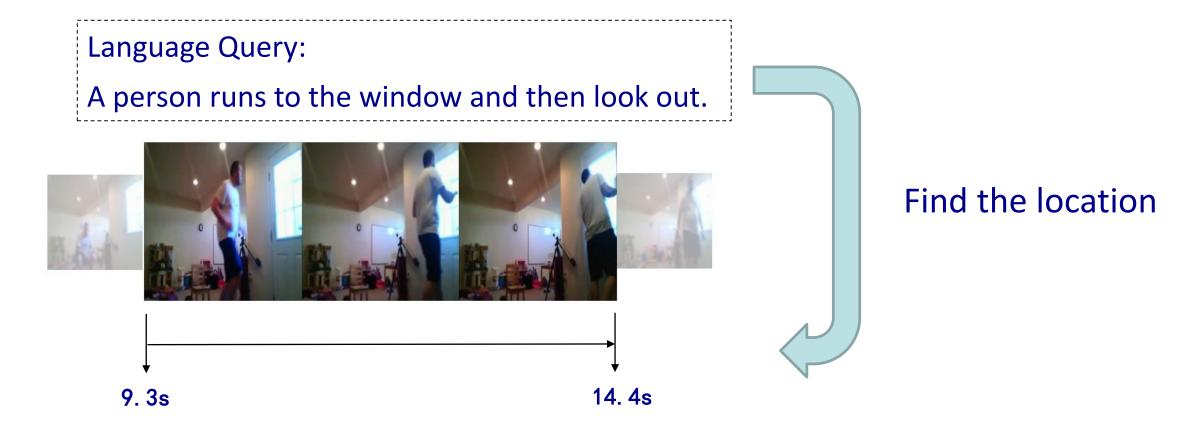
(b) t-SNE on learned features

Language-Driven Temporal Activity Localization: A Semantic Matching Reinforcement Learning Model

Weining Wang, Yan Huang, Liang Wang

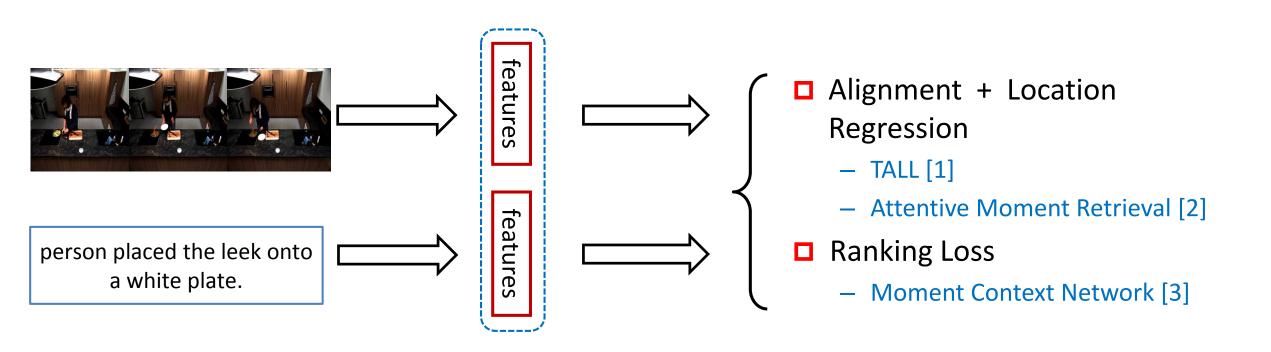
CVPR 2019 (Oral)

Language-driven Temporal Action Localization



Activities in real world are more complex and diverse, which cannot be well described by a single word

Our Motivation



Current methods are time-consuming with sliding windows
 Temporal information is not fully exploited

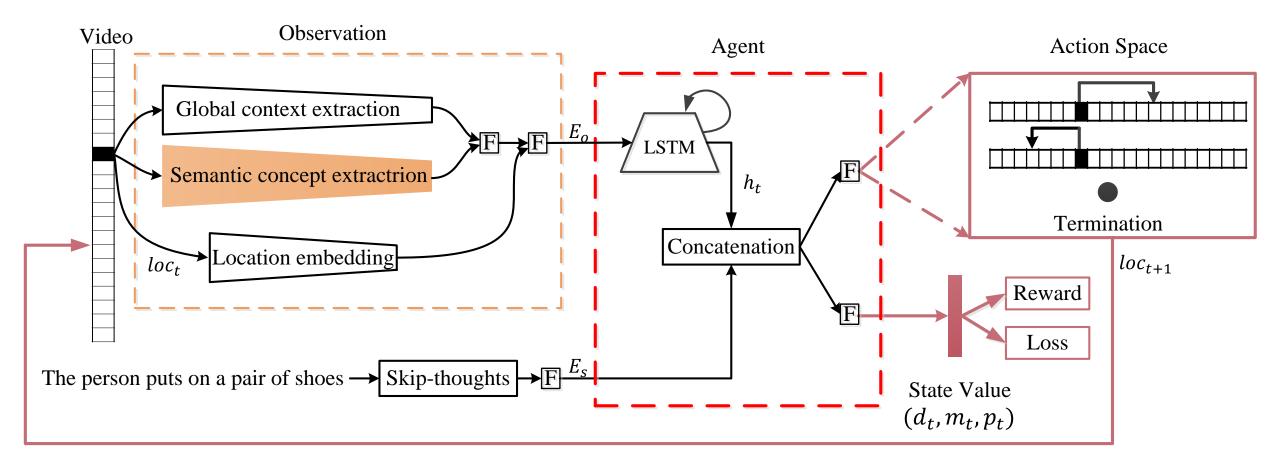
[1] Gao et al., TALL: Temporal Activity Localization via Language Query. In ICCV, 2017.

[2] Liu et al., Attentive moment retrieval in videos. In ACM SIGIR, 2018.

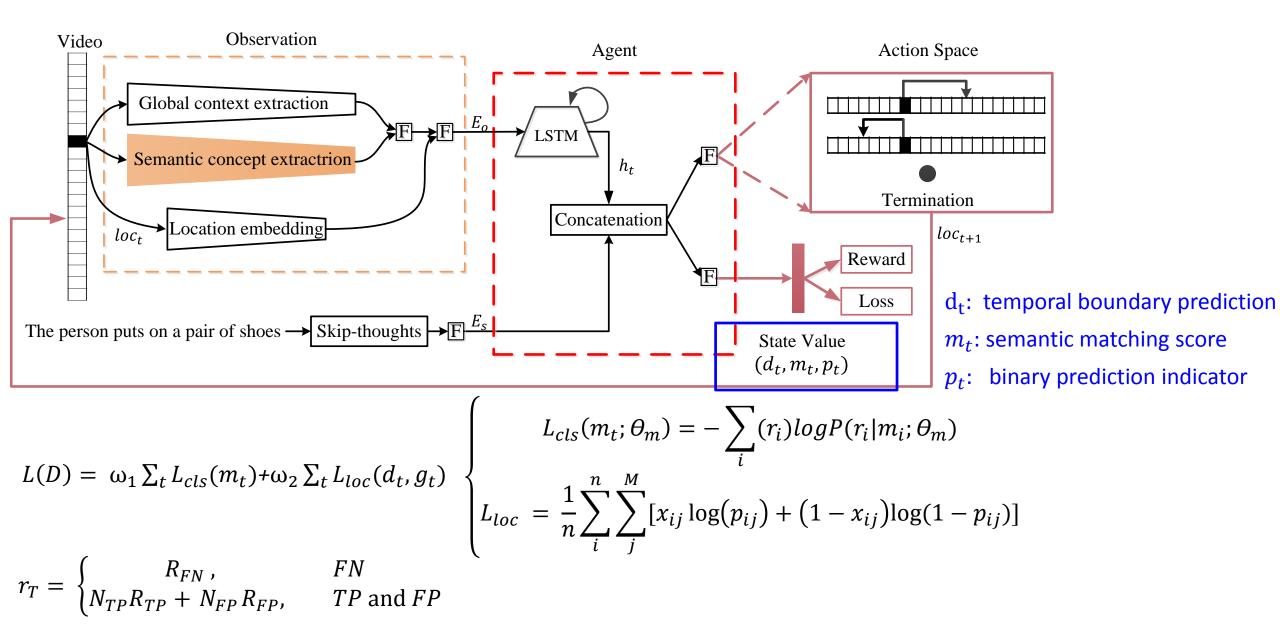
[3] Hendricks et al., Localizing moments in video with natural language. In ICCV, 2017..

Semantic Matching Reinforcement Learning

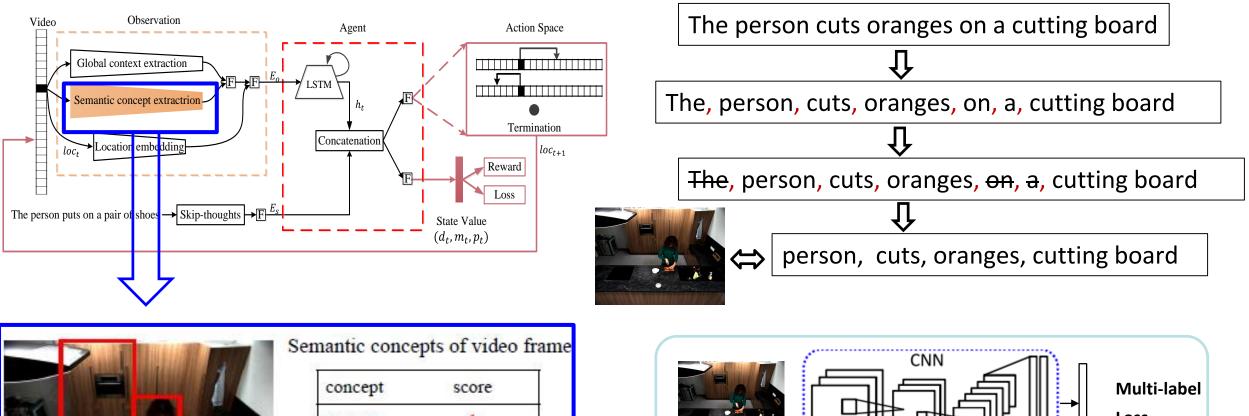
- Regulate the temporal boundaries by selectively observing a sequence of video frames
- Match the visual-semantic information with the aid of semantic concepts



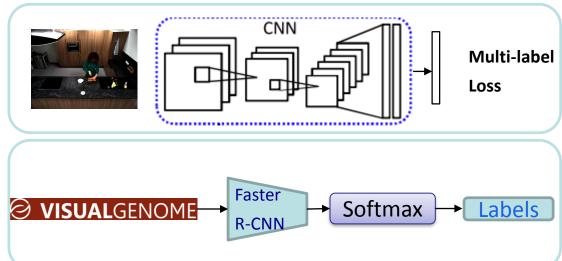
Matching via Reinforcement Learning



Sematic Concept Extraction



	concept	score
	person	1
6 17	orange	0.75
1 1	cut	0.93
	cutting board	0.83



Experimental Results

Table 1: Results on TACoS and Charades-STA datasets

				TACoS					Cha	arades-ST	ΓA	
Method	R@1	R@ 1	R@ 1	R@5	R@5	R@5	mR	R@1	R@ 1	R@5	R@5	. mR
Wiethou	IoU=0.5	IoU=0.3	IoU=0.1	IoU=0.5	5 IoU=0.3	3 IoU=0.1		IoU=0.5	5 IoU=0.7	/ IoU=0.5	ioU=0.7	
Random	0.83	1.81	3.28	3.57	7.03	15.09	5.27	8.51	3.03	37.12	14.06	15.68
CTRL 8	13.30	18.32	24.32	25.42	36.69	48.73	27.80	23.63	8.89	58.92	29.52	30.24
RL(b)	11.76	17.70	22.42	22.61	33.24	45.10	25.47	19.78	5.60	55.65	25.07	26.53
RL(f)	12.79	18.53	23.87	24.56	35.30	47.64	27.15	21.18	7.33	56.01	27.85	28.09
SM-RL(attr+b)	13.50	18.83	23.72	24.01	34.19	46.56	26.80	21.00	7.63	57.25	28.06	28.49
SM-RL(attr+f)	14.01	19.02	23.96	24.55	36.42	47.14	27.51	22.54	8.56	58.95	29.74	29.95
SM-RL(attr*+b)	14.20	19.79	25.17	25.38	36.69	48.22	28.24	23.56	9.52	60.17	32.53	31.45
SM-RL(attr*+f)	15.95	20.25	26.51	27.84	38.47	50.01	29.84	24.36	11.17	61.25	32.08	32.22

Table 2: Results on DiDeMo dataset

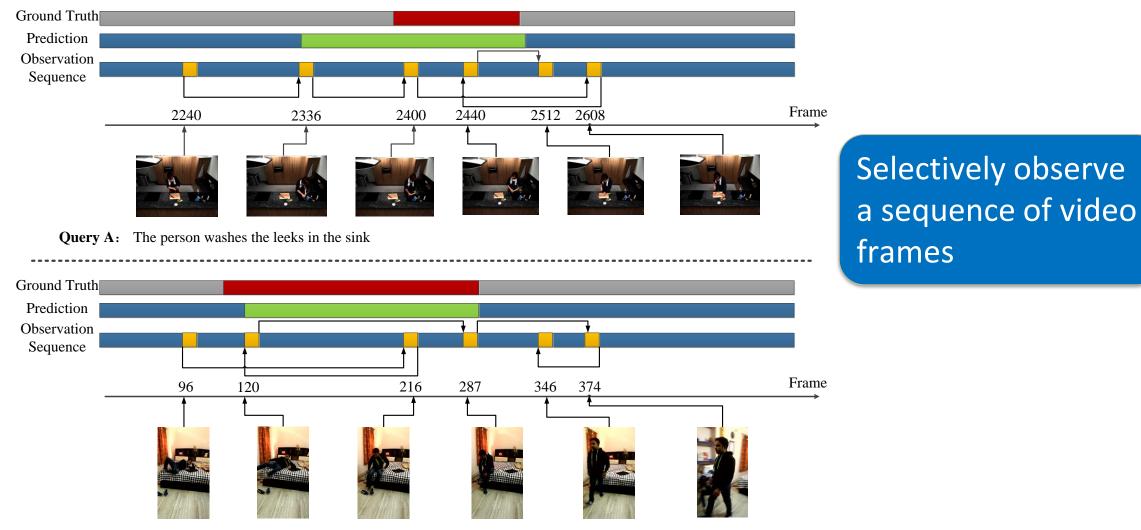
Method	Rank@1	Rank@5	mIoU
MCN([11])	28.10	78.21	41.08
SM-RL(attr*+b)	29.64	79.38	42.17
SM-RL(attr*+f)	31.06	80.45	43.94

 Table 3: Detection speed comparison

Method	Average running time (per minute video)
CTRL	202ms
Ours	32ms

Simantic concepts lead to significant performance improvement
 Achieve the best performance with 6× faster speed

Example Analysis



Query B: Person put on a pair of shoes

The agent can skip in both forward and backward directions in a video

Thank You !