- 第39届CCF中国数据库学术会议在威海成功举行
- CCF数据库专业委员会2023年第三次常委扩大会议
- 第40届CCF中国数据库学术会议在贵阳成功举行
- 第38届CCF中国数据库学术会议在昆明成功举办
- 第37届CCF中国数据库学术会议在华中科技大学成功举行
- 第 37 届 CCF 中国数据库学术会议(NDBC 2020) 征文通知
- 山东大学承办第36届中国数据库学术会议
- 第35届中国数据库学术会议在大连海事大学成功举行
- 数据科学与工程教育论坛申办指南
- 第33届中国数据库学术会议(NDBC 2016)征文通知
- 第32届全国数据库学术会议
- 中国计算机学会第28届中国数据库学术会议总结
- 祝贺DSE期刊入选中国计算机学会推荐期刊
- 祝贺DSE期刊被EI数据库收录
- DSE精选文章 | 基于众包的困难搜索任务设计与任务集构建 A Crowd-powered Task Generation Method for Study of Struggling Search
- DSE精选文章 | Top-k Competitive Location Selection over Moving Objects
- DSE精选文章 | 基于GPU的完全并发动态超空间哈希 GPU-based Dynamic Hyperspace Hash with Full Concurrency
- DSE精选文章 | 基于高质量种子识别的面向静态和动态网络的多重局部社区发现 Multiple Local Community Detection via High-Quality Seed Identification over Both Static and Dynamic Networks
- DSE APWeb-WAIM 2020精选特邀论文特刊
- DSE精选文章 | 用于分布式图数据存储的工作负载自适应流数据分区器 A Workload‑Adaptive Streaming Partitioner for Distributed Graph Stores
- DSE精选文章 | SUMA:高效的支持OWL 2 DL的查询回答系统 SUMA:A Partial Materialization-based Approach to Scalable Query Answering in OWL 2 DL
- DSE精选文章 | 基于群体用户聚集的最优路径查询
- DSE精选文章 | 面向组合优化问题的图学习综述 Graph Learning for Combinatorial Optimization: A Survey of State-of-the-Art
- DSE精选文章 | 大规模图数据上的关键词搜索综述 Keyword Search on Large Graphs: A Survey
- 喜讯|DSE被ESCI收录
- DSE简介
- DSE编委会
- DSE论文
- 2022年度VLDB暑期学校暨20周年特别论坛成功举办
- VLDB Summer School 2022 报名工作启动
- 2021年度VLDB暑期学校成功举办
- VLDB Summer School 2020重磅来袭!
- 2020年度VLDB暑期学校成功举办
- 2019年度VLDB暑期学校
- VLDB summer school 2018
- VLDB Summer School 2017回顾
- VLDB Summer School 2016 回顾
DSE简介
Data Science and Engineering (DSE) is an international, peer-reviewed, and open access journal published under the brand SpringerOpen. DSE is published on behalf of the China Computer Federation (CCF). Focusing on the theoretical background and advanced engineering approaches,DSE aims to offer a prime forum for researchers, professionals, and industrial practitioners to share their knowledge in this rapidly growing area. It provides in-depth coverage of the latest advances in the closely related fields of data science and data engineering.
More specifically, DSE covers four areas: (i) the data itself, i.e., the nature and quality of the data, especially big data; (ii) the principles of information extraction from data, especially big data; (iii) the theory behind data-intensive computing; and (iv) the techniques and systems used to analyze and manage big data.
DSE publishes high-quality, original research papers, brief reports, and critical reviews in all theoretical, technological, and interdisciplinary studies that make up the fields of data science and engineering and its applications.
This is an open access journal, which is freely accessible online to anyone, anywhere. THE OPEN ACCESS FEES (article-processing charges) ARE FULLY SPONSORED. AUTHORS CAN PUBLISH IN THE JOURNAL WITHOUT ANY ADDITIONAL CHARGES.